CRYSTAL STRUCTURE OF 6-CHLORO-4-NITRO-2-PHENYLPYRIMIDINE

T. V. Rybalova, V. F. Sedova, I. Yu. Bagryanskaya, Yu. V. Gatilov, and O. P. Shkurko

The crystal structures of 6-chloro-4-nitro-2-phenylpyrimidine and 6-chloro-2-phenylpyrimidine have been determined using X-ray diffraction. The effect of the nitro group and the endocyclic nitrogen atoms on the geometric parameters of the 2- and 4-nitropyrimidine molecules, and also related α -nitroazines are compared.

Keywords: nitropyrimidine, chloropyrimidine, crystal structure.

Earlier we published data on the crystal structure of 2-nitropyridine (1) [1], 4,6-dimethyl-2nitropyrimidine (2), and 2-nitro-5-phenylpyrimidine (3) [2]. In continuing studies of the geometry of α -nitroazines, we have turned to substituted 4-nitropyrimidines. According to data in the Cambridge Structural Database (CSD) [3], the geometry of this group of compounds has not been studied.

In this paper, using X-ray diffraction we have determined the crystal structure of 6-chloro-4-nitro-2-phenylpyrimidine (4) (Tables 1 and 2). For a more correct determination of the effect of the nitro group on the geometric parameters of the pyrimidine ring, we determined the crystal structure of 6-chloro-2-phenylpyrimidine (5) (Tables 1 and 3). The geometric characteristics of the indicated compounds (bond lengths and bond angles) are given in Tables 4 and 5.

In compound 4 (Fig. 1) the nitro group is rotated by $14.2(1)^{\circ}$ relative to the plane of the pyrimidine ring, while between the planes of the heterocycle and the phenyl ring there is a small dihedral angle of $6.9(1)^{\circ}$. That angle in compound 5 (Fig. 2) is equal to $1.9(1)^{\circ}$. For substituted 2-phenylpyrimidines, the analogous parameter is significantly smaller than for substituted 5-phenylpyrimidines [2,4].

Comparison of the bond lengths in compounds 4 and 5 (see Table 4) shows that when the NO₂ group is introduced into the position 4 of the pyrimidine ring, the endocyclic $N_{(3)}$ - $C_{(4)}$ bond is shortened by 0.023(6) Å and the other bonds remain practically the same, including the endocyclic $C_{(4)}$ - $C_{(5)}$ bond. The $C_{(6)}$ -Cl bond is shortened by 0.012(6) Å.

The change in the endocyclic bonds at the *ipso* carbon atom bonded to the nitro group in compound **4** is similar to the changes observed earlier for other α -nitroazines. So compared with the mean statistical values (Table 6), the endocyclic C–N bond at the *ipso* carbon atom is shortened by 0.029 Å, 0.021 Å, and 0.026 Å respectively for 2-nitropyridines, 2-nitro- and 4-nitropyrimidines. The endocyclic C–C bond is shortened to a lesser extent: by 0.011 Å (2-nitropyridines) and 0.019 Å (4-nitropyrimidine).

For α -nitroazines, typically we see appreciable lengthening of the exocyclic C–N bond (the C–NO₂ bond) by 0.029 Å (2-nitropyridines), 0.034 Å (2-nitropyrimidines), and 0.040 Å (4-nitropyrimidine). The endocyclic C–C bonds at the *ipso* carbon atom in β -nitroazines remain practically the same as the mean

Novosibirsk Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences, Novosibirsk 630090, Russia; e-mail: gatilov@nioch.nsc.ru. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 2, pp. 229-235, February, 2001. Original article submitted April 22, 1999.

Characteristics	Compound 4	Compound 5
Empirical formula	$C_{10}H_6CIN_3O_2$	$C_{10}H_7CIN_2$
Molecular weight	235.63	190.63
Type of cell	Monoclinic	Triclinic
Space group	$P2_{1}/c$	<i>P</i> -1
Cell parameters, (Å)	a = 6.3434(9)	a = 6.179(2)
	b = 11.120(2)	b = 7.531(2)
	c = 14.770(2)	c = 10.102(2)
		$\beta = 91.07(2)$
	$\beta = 95.45(1)^{\circ}$	$\beta = 101.58(2)$
		$\gamma = 98.64(2)$
Cell volume (Å ³)	1037.1(3)	451.4(2)
Ζ	4	2
Crystal dimensions (mm ³)	$1.15 \times 0.20 \times 0.15$	$1.00 \times 0.40 \times 0.15$
Scanning method	20/0	20/0
θ range (°)	4-70	4-70
Number of reflections	2314	1939
Independent	1969	1710
Correction for absorption	face-indexed	face-indexed
Transmission	0.663-0.309	0.625-0.192
R-factors		
$R_1 (I > 2\sigma)$	0.0512	0.0429
wR_2 (all I)	0.1618	0.1313
S	1.081	1.047
Extinction	0.004(1)	0.050(6)

TABLE 1. Crystallographic Data for Compounds 4 and 5

Fig. 1. Structure of the 6-chloro-4-nitro-2-phenylpyrimidine (4) molecule according to X-ray diffraction data (25% probability thermal ellipsoids are shown).

Fig. 2. Structure of the 6-chloro-2-phenylpyrimidine (5) molecule according to X-ray diffraction data (25% probability thermal ellipsoids are shown).

statistical values: they are 0.005 Å and 0.006 Å respectively for substituted 3(5)-nitropyridines and 5-nitropyrimidines. The exocyclic C–NO₂ bond is shortened by 0.020 Å for 3(5)-nitropyridines, and does not change for 5-nitropyrimidines (Table 6).

A 4		/ L	-1-	I.I.
Atom	x/a	<i>y/0</i>	Z/C	U_{eq}
N ₍₁₎	7675(3)	-99(2)	8179(1)	58(1)
C ₍₂₎	9596(4)	45(2)	8629(2)	52(1)
N ₍₃₎	10604(3)	1107(2)	8749(1)	54(1)
C ₍₄₎	9545(4)	2033(2)	8389(2)	55(1)
C(5)	7592(4)	2020(2)	7913(2)	61(1)
C ₍₆₎	6748(4)	872(2)	7827(2)	59(1)
C ₍₇₎	10705(4)	-1037(2)	9007(2)	54(1)
C ₍₈₎	12787(5)	-965(3)	9390(2)	66(1)
C ₍₉₎	13821(6)	-1977(3)	9739(2)	77(1)
C(10)	12788(6)	-3073(3)	9708(2)	80(1)
C ₍₁₁₎	10740(7)	-3148(3)	9328(2)	79(1)
C(12)	9671(5)	-2142(2)	8979(2)	67(1)
N(13)	10673(4)	3220(2)	8532(2)	66(1)
O ₍₁₄₎	12505(4)	3212(2)	8788(2)	103(1)
O(15)	9604(4)	4110(2)	8370(2)	85(1)
Cl	4312(1)	662(1)	7215(1)	83(1)

TABLE 2. Atomic Coordinates $(\times 10^4)$ and Equivalent Isotropic Thermal Factors $(\text{\AA}^2 \times 10^3)$ of Non-hydrogen Atoms for 6-Chloro-4-nitro-2-phenylpyrimidine (4)

Atom	x/a	y/b	z/c	$U_{ m eq}$
N	1512(2)	2222(2)	15(2)(2)	50(1)
N ₍₁₎	1512(2)	2233(2)	1562(2)	59(1)
C(2)	-229(3)	2175(2)	485(2)	53(1)
N(3)	-2391(2)	1577(2)	480(2)	67(1)
C ₍₄₎	-2778(3)	1030(3)	1667(2)	74(1)
C(5)	-1121(4)	1048(3)	2831(2)	71(1)
C ₍₆₎	1022(3)	1672(3)	2693(2)	63(1)
C ₍₇₎	244(3)	2823(2)	-811(2)	53(1)
C ₍₈₎	-1480(3)	2782(3)	-1969(2)	70(1)
C ₍₉₎	-1035(4)	3408(3)	-3173(2)	84(1)
C(10)	1128(4)	4082(3)	-3228(2)	77(1)
C ₍₁₁₎	2858(4)	4123(3)	-2096(2)	75(1)
C(12)	2427(3)	3487(3)	-888(2)	66(1)
Cl	3288(1)	1726(1)	4097(1)	99(1)

TABLE 3. Atomic Coordinates $(\times 10^4)$ and Equivalent Isotropic Thermal Factors $(\text{\AA}^2 \times 10^3)$ of Non-hydrogen Atoms for 6-Chloro-2-phenylpyrimidine (5)

RHF/6-31G* calculations for compounds 4 and 5 (Tables 4 and 5) agree with experimental data, and also indicate that when a nitro group is introduced, the endocyclic bonds $C_{(4)}$ -N₍₃₎ and $C_{(4)}$ -C₍₅₎ at the *ipso* carbon atom are shortened by respectively 0.020 Å and 0.008 Å (Table 4).

Comparison of the geometric parameters of compounds **4** and **5** using X-ray diffraction data shows that introducing an NO₂ group leads to an increase in the intracyclic bond angle at the *ipso* $C_{(4)}$ atom by 3.5°, and a decrease in the angles at the vicinal atoms by 1.2° at N₍₃₎ and by 2.3° at C₍₅₎.

The remaining angles in the molecule do not change. This is consistent with our observations that introducing a nitro group in the α position relative to the nitrogen atom of the azine ring leads to an increase in the intracyclic bond angle at the *ipso* carbon atom by ~3° [2]. According to the calculations, the increase in the N₍₃₎-C₍₄₎-C₍₅₎ angle is 2.4° when an NO₂ group is introduced into compound **5** (Table 5).

Bond lengths	6-Chloro-4-nitro-2-phenylpyrimidine 4		6-Chloro-2-phenylpyrimidine 5		
Bolid lengths	ab initio	X-ray diffraction	ab initio	X-ray diffraction	
$N_{(1)}-C_{(2)}$	1.331	1.341(3)	1.330	1.336(2)	
$C_{(2)} - N_{(3)}$	1.323	1.347(3)	1.322	1.343(2)	
$N_{(3)}-C_{(4)}$	1.299	1.313(3)	1.319	1.336(3)	
C(4)-C(5)	1.371	1.365(4)	1.379	1.367(3)	
C(5)-C(6)	1.390	1.385(3)	1.383	1.376(3)	
$C_{(6)} - N_{(1)}$	1.300	1.314(3)	1.301	1.310(2)	
C ₍₄₎ -N ₍₁₃₎	1.482	1.508(3)	_	—	
N(13)-O(14)	1.182	1.187(3)	—	—	
N(13)-O(15)	1.195	1.210(3)	—	—	
$C_{(2)} - C_{(7)}$	1.480	1.476(3)	1.485	1.482(2)	
$C_{(7)} - C_{(8)}$	1.393	1.388(4)	1.392	1.384(2)	
$C_{(8)} - C_{(9)}$	1.383	1.378(4)	1.384	1.383(3)	
$C_{(9)} - C_{(10)}$	1.386	1.382(4)	1.386	1.371(3)	
$C_{(10)} - C_{(11)}$	1.386	1.368(5)	1.386	1.369(3)	
$C_{(11)} - C_{(12)}$	1.383	1.382(4)	1.384	1.386(3)	
C(12)-C(7)	1.392	1.391(3)	1.392	1.387(2)	
C ₍₆₎ –Cl	1.727	1.730(3)	1.735	1.742(2)	

TABLE 4. Bond Lengths (Å) in the Molecules of Compounds 4 and 5

Angle	6-Chloro-4-nitro-2-	phenylpyrimidine 4	6-Chloro-2-phenylpyrimidine 5		
Aligie	ab initio	X-ray diffraction	ab initio	X-ray diffraction	
$N_{(1)} - C_{(2)} - N_{(3)}$	123.5	124.6(2)	124.4	125.2(2)	
$C_{(2)} - N_{(3)} - C_{(4)}$	116.8	114.6(2)	117.3	115.8(2)	
$N_{(3)}-C_{(4)}-C_{(5)}$	125.5	127.2(2)	123.1	123.7(2)	
$C_{(4)} - C_{(5)} - C_{(6)}$	112.6	112.4(2)	114.4	114.7(2)	
C(5)-C(6)-N(1)	123.7	124.5(2)	123.6	124.7(2)	
$C_{(6)} - N_{(1)} - C_{(2)}$	117.8	116.7(2)	117.3	116.0(2)	
$N_{(3)}-C_{(4)}-N_{(13)}$	115.9	114.3(2)	—	—	
C(5)-C(4)-N(13)	118.6	118.5(2)	_	—	
C ₍₄₎ -N ₍₁₃₎ -O ₍₁₄₎	117.9	118.4(2)	—	—	
C ₍₄₎ -N ₍₁₃₎ -O ₍₁₅₎	115.9	116.0(2)	_	—	
O ₍₁₄₎ -N ₍₁₃₎ -O ₍₁₅₎	126.2	125.6(2)	_	—	
$N_{(1)}-C_{(2)}-C_{(7)}$	118.2	117.9(2)	117.4	117.8(1)	
$N_{(3)}-C_{(2)}-C_{(7)}$	118.2	117.5(2)	118.2	117.0(2)	
$C_{(2)} - C_{(7)} - C_{(8)}$	120.1	120.5(2)	120.2	120.8(2)	
$C_{(2)} - C_{(7)} - C_{(12)}$	120.4	120.1(2)	120.5	120.7(2)	
$C_{(8)} - C_{(7)} - C_{(12)}$	119.6	119.4(2)	119.3	118.5(2)	
$C_{(7)} - C_{(8)} - C_{(9)}$	120.1	120.4(3)	120.3	120.7(2)	
$C_{(8)} - C_{(9)} - C_{(10)}$	120.1	120.0(3)	120.1	120.1(2)	
$C_{(9)}-C_{(10)}-C_{(11)}$	120.1	119.7(3)	119.9	120.1(2)	
$C_{(10)} - C_{(11)} - C_{(12)}$	120.1	121.1(3)	120.1	120.1(2)	
$C_{(11)} - C_{(12)} - C_{(7)}$	120.1	119.4(3)	120.3	120.5(2)	
N(1)-C(6)-Cl	117.3	116.1(2)	117.0	116.2(1)	
C(5)-C(6)-Cl	119.0	119.4(2)	119.4	119.1(2)	

TABLE 5. Bond Angles (deg.) in Molecules of Compounds 4 and 5

In contrast to previously studied α -nitroazines 1-3, in the 4-nitropyrimidine 4, according to X-ray diffraction we observe asymmetry in the nitro group: one N–O bond is 0.023 Å longer than the other (Table 4). The calculations for compound 4 (Table 4) also suggest that the N–O bonds are different by 0.013 Å. Asymmetry in the nitro group in α -nitroazines was predicted by 3-21G* calculations for unsubstituted 4-nitropyrimidine and 2-nitropyridine 1 [7]. But it has been experimentally demonstrated (by X-ray diffraction) that in the crystal phase, for 2-nitropyridine these bonds are practically identical: they are only 0.004 Å different [1].

Maan		α-Nitroazines			β-Nitroazines	
Bond statistical values [5]	2-nitro- pyridines [2]	2-nitro- pyrimidines [2]	4-nitro- pyrimidine 4	3-nitro- pyridines*	2-R-5-nitro- pyrimidines [6]* ²	
N-C-N _{Pym}	1.333(13)	—	1.312(2)	—	—	
N-C _{Pym}	1.339(15)	—		1.313(3)		—
N-C _{Py}	1.337(12)	1.308(6)	—	—		—
C–C _{Ar}	1.384(13)	1.373(16)		1.365(4)	1.381(6)	1.378(11)
C _{Ar} -NO ₂	1.468(14)	1.497(6)	1.502(4)	1.508(3)	1.448(12)	1.468(1)

TABLE 6. Average C–C and C–N Bond Lengths at the *ipso* Carbon Atom of Substituted Nitropyridines and Nitropyrimidines

* Using 9 structures of substituted 3-nitropyridines, taken from the Cambridge Structural Database [3], with $\sigma_f = 1$ and without substituents *ortho* to the nitro group.

 $*^2$ Without substituents at the 4, 6 positions.

Note the slightly shortened intermolecular Cl···O contact of 3.080(2) Å in the crystal of compound 4 compared with the sum of the van der Waals radii, 3.13 Å [8].

The data obtained in this work support hypotheses that the nitro group in substituted α -azine molecules has the same kind of effect on redistribution of *s*- and *p*-electrons in formation of endocyclic and exocyclic C–N bonds.

EXPERIMENTAL

Compounds 4 and 5 were synthesized by the familiar procedures in [9] and [10]. The crystals for the X-ray diffraction studies were obtained by recrystallization of the samples from ethanol; mp 100-101°C for compound 4, 72-73°C for compound 5.

The X-ray diffraction experiment was conducted on a Syntex P21 diffractometer, $CuK\alpha$ radiation, with a graphite monochromator. The crystallographic parameters of the crystals are given in Table 1. The structure was deciphered by the direct method using the program SHELXS-86; refinement was by the full-matrix least-squares method using the program SHELXL-93 in the anisotropic approximation, using all *F*2. The coordinates of the hydrogen atoms were refined isotropically and taken from a difference synthesis. The coordinates of the nonhydrogen atoms are given in Tables 2 and 3.

The RHF/6-31 G* calculations were performed using the program GAMESS [11].

We would like to thank the Russian Foundation for Basic Research for financial support (grant 96-15-97562) and help paying for the license to use the Cambridge Structural Database (project 96-07-89187).

REFERENCES

- 1. T. V. Rybalova, V. F. Sedova, Yu. V. Gatilov, and O. P. Shkurko, *Khim. Geterotsikl. Soedin.*, 1367 (1998).
- 2. T. V. Rybalova, V. F. Sedova, Yu. V. Gatilov, and O. P. Shkurko, *Khim. Geterostikl. Soedin.*, 348 (1999).
- 3. F. N. Allen and O. Kennard, *Chemical Design Automation News*, **8**, 31 (1993).
- 4. R. P. Hernandez, J. D. Rodriquez, and M. I. G. Trimino, Acta Crystallogr., Ser. C., 51, 1392 (1995).
- 5. F. H. Allen, O. Kennard, D. J. Watson, L. Brammer, A. G. Orpen, and R. Taylor, *J. Chem. Soc., Perkin Trans. 2*, No. 12, S1 (1987).
- 6. W. A. W. Stolle, A. E. Frissen, A. T. M. Marcelis, and H. C. van der Plas, J. Org. Chem., 56, 2411 (1991).
- 7. J. S. Murray, J. M. Seminario, and P. Politzer, J. Mol. Structure, 187, 95 (1989).
- 8. N. S. Zefirov and P. M. Zorkii, Zh. Struktur. Khim., 17, 994 (1976).
- 9. O. V. Yagodina, V. F. Sedova, and V. P. Mamaev, *Khim. Geterotsikl. Soedin.*, 1088 (1989).
- 10. H. C. van der Plas, B. Haase, B. Zuurdeeg, and M. C. Vollering, Rec. Trav. Chim., 85, 1101 (1966).
- M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. J. Su, T. L. Windus, M. Dupuis, and J. A. Montgomery, *J. Comput. Chem.*, 14, 1347 (1993).